Benchtop UTM (1-100 kN) Products

Testometric’s Universal Testing Machines (UTMs) are designed to cater to a wide range of materials and applications, from research labs to routine quality control in various industries. The machines in the 1 kN to 1000 kN range are renowned for their precision, versatility, and ease of use.

Key Features:

  • Wide Capacity Range: Models available from 1 kN to 1000 kN, suitable for testing a variety of materials including geotextile, fabrics, adhesives, composites, metals, textiles, plastics, and more.
  • High Precision: Equipped with high-stiffness load frames and advanced electronics to ensure accurate and repeatable results.
  • Touch Screen and PC Compatibility: Modern touch screen interface combined with PC compatibility allows for enhanced control and data management using WinTest™ software.
  • User-Friendly Interface: Full numeric keypad with tactile buttons and a large, clear matrix display for easy operation and data viewing.
  • Automated Testing Capabilities: Features such as automatic specimen break detection, auto-ranging, auto-calibration, and quick rate return enhance testing efficiency and accuracy.
  • Comprehensive Data Output: Capable of generating hard copies of test reports including results, statistics, and graphs. Data can also be exported for further analysis.

Benefits:

  • Versatile Use: Suitable for a broad range of industries, from aerospace to packaging.
  • Enhanced Efficiency: High-speed data collection and processing capabilities reduce testing time.
  • Quality Assurance: Ensures products meet industry standards and specifications through rigorous testing.
  • Robust Design: Built to withstand heavy usage in industrial environments, ensuring long-term reliability.

SOFTWARE

Comprehensive winTest™ Analysis universal windows software covering tensile, compression, peel, shear, tear, cyclic, creep and multi stage testing. It includes a wide range of industry standard test methods and facility to create and store an unlimited number of further test methods. There is automated storage of all test data and ease of export to other software packages such as word, excel, access and SPC systems for enhanced report generation.

Column 1 Column 2 Column 3 Column 4
Average Force Energy to Break Density Plastic Strain Ratio r
Average Force / Width Energy to Yield Chewiness Spring Rate Between Forces
Bending Modulus Initial Modulus Fracturability Spring Rate Between Deflections
Crush Force (Edge) Force @ Peak Hardness Young’s Modulus
Deflection @ 1st Collapse Force @ 1st Collapse Poisson’s Ratio Chord Modulus
Deflection @ Force (Stage) Force @ Elongation Plastic Strain Ratio r Tangential Modulus @ Strain
Dynamic Co-eff of Friction Force @ Proof Spring Rate Between Forces Tangential Modulus @ Stress
Elongation @ Break Force after Stage Spring Rate Between Deflections Secant Modulus @ Strain
Energy to Break Lowest Force Young’s Modulus Secant Modulus @ Stress
Energy to Yield Seam Opening Force Chord Modulus Strain @ Limit of Proportionality
Initial Modulus Seamed Strength Tangential Modulus @ Strain Force @ Rupture
Force @ Peak Static Co-eff of Friction Tangential Modulus @ Stress Strain @ Rupture
Force @ 1st Collapse Strain @ Break Secant Modulus @ Strain Average of 5 Highest Peaks
Force @ Elongation Strain @ Force (Load Cycle) Secant Modulus @ Stress Bend. Strength @ Peak
Force @ Proof Strain @ Force (Return Cycle) Strain @ Limit of Proportionality Bursting Strength
Force after Stage Strain @ Force (Stage) Force @ Rupture Average Peaks (Selected Region)
Lowest Force Stress @ Peak Strain @ Rupture Percentage Reduction of Area
Seam Opening Force Stress @ Proof Average of 5 Highest Peaks Secant Stiffness
Seamed Strength Stress @ Strain Bend. Strength @ Peak Stress @ % Height
Static Co-eff of Friction Stress @ Yield Bursting Strength Force @ Time
Strain @ Break T.E.A. Average Peaks (Selected Region) Deflection @ Time
Strain @ Force (Load Cycle) Tenacity Percentage Reduction of Area Time to Peak
Strain @ Force (Return Cycle) Transverse Rupture Strength Secant Stiffness Time to Failure
Strain @ Force (Stage) Unseamed Strength Stress @ % Height LOP
Stress @ Peak Young’s Modulus Force @ Time MOR
Stress @ Proof Chord Modulus Deflection @ Time Strain to LOP
Stress @ Strain Tangential Modulus @ Strain Time to Peak Strain to MOR
Stress @ Yield Tangential Modulus @ Stress Time to Failure Ym
T.E.A. Secant Modulus @ Strain LOP Average of 5 Highest Peaks
Tenacity Secant Modulus @ Stress MOR Spring Rate Between Forces
Transverse Rupture Strength Strain @ Limit of Proportionality Strain to LOP Density
Unseamed Strength Force @ Rupture Strain to MOR Chewiness
Young’s Modulus Strain @ Rupture Ym Hardness
Chord Modulus Average Peaks (Selected Region) Average of 5 Highest Peaks Poisson’s Ratio
Tangential Modulus @ Strain Percentage Reduction of Area Spring Rate Between Deflections Plastic Strain Ratio r
Tangential Modulus @ Stress Spring Rate Between Forces Density Spring Rate Between Deflections
Secant Modulus @ Strain Spring Rate Between Deflections Chewiness Young’s Modulus
Secant Modulus @ Stress Chewiness Hardness Chord Modulus
Strain @ Limit of Proportionality Fracturability Poisson’s Ratio Tangential Modulus @ Strain
Force @ Rupture Hardness Plastic Strain Ratio r Tangential Modulus @ Stress
Strain @ Rupture Plastic Strain Ratio r Spring Rate Between Forces Secant Modulus @ Strain
Average of 5 Highest Peaks Spring Rate Between Deflections Density Secant Modulus @ Stress
Bend. Strength @ Peak Young’s Modulus Chewiness Strain @ Limit of Proportionality
Bursting Strength Average Peaks (Selected Region) Hardness Force @ Rupture
Percentage Reduction of Area Poisson’s Ratio Strain @ Rupture
Applications
Aerospace Adhesives Packaging
Automotive Food Cord and Rope
Cable and Wire Pipe Elastic
Clothing Adhesive tape Geotextiles
Containers Credit Cards Medical
Military Constructions Rubber
Bedding Cargo Restraints GRC
Toys Concrete Rope & Nets
Fibre Metals Insulation
Foam Furniture Footwear
Timber Springs Plastic film and sheet
Wood based Panel Yarn & Cord Corrugated board & Boxes

Each model is tailored to provide optimal performance for specific testing requirements, ensuring that you have the right tool for your application.